已知sqrt(2)约等于1.414,要求不用数学库,求sqrt(2)精确

 

题目:已知 sqrt (2)约等于 1.414,要求不用数学库,求 sqrt (2)精确到小数点后 10 位。

考察点

  1. 基础算法的灵活应用能力(二分法学过数据结构的同学都知道,但不一定往这个方向考虑;如果学过数值计算的同学,应该还要能想到牛顿迭代法并解释清楚)
  2. 退出条件设计

二分法

1. 已知 sqrt(2)约等于 1.414,那么就可以在(1.4, 1.5)区间做二分

查找,如: a) high=>1.5 b) low=>1.4 c) mid => (high+low)/2=1.45 d) 1.45*1.45>2 ? high=>1.45 : low => 1.45 e) 循环到 c)

2. 退出条件

a) 前后两次的差值的绝对值<=0.0000000001, 则可退出

const double EPSILON = 0.0000000001;

double sqrt2() {
    double low = 1.4, high = 1.5;
    double mid = (low + high) / 2;

    while (high - low > EPSILON) {
        if (mid * mid > 2) {
            high = mid;
        } else {
            low = mid;
        }
        mid = (high + low) / 2;
    }

    return mid;
}

牛顿迭代法

原理:

其实牛顿开方法是牛顿迭代法在开平方上的应用,牛顿迭代法同时也能快速逼近很多方程的解,自然可以用来开任意平方。

牛顿迭代法的原理很简单,其实是根据f(x)在x0附近的值和斜率,估计f(x)和x轴的交点,看下面的动态图:

【用牛顿迭代法开平方】


1.牛顿迭代法的公式为:

xn+1 = xn-f(xn)/f'(xn)

对于本题,需要求解的问题为:f(x)=x2-2 的零点

EPSILON = 0.1 ** 10
def newton(x):
    if abs(x ** 2 - 2) > EPSILON:
        return newton(x - (x ** 2 - 2) / (2 * x))
    else:
        return x

参考链接: 

https://github.com/debitCrossBlockchain/interview__reference/blob/master/01.%E9%98%BF%E9%87%8C%E7%AF%87/1.1.2%20%E5%B7%B2%E7%9F%A5sqrt(2)%E7%BA%A6%E7%AD%89%E4%BA%8E1.414%EF%BC%8C%E8%A6%81%E6%B1%82%E4%B8%8D%E7%94%A8%E6%95%B0%E5%AD%A6%E5%BA%93%EF%BC%8C%E6%B1%82sqrt(2)%E7%B2%BE%E7%A1%AE%E5%88%B0%E5%B0%8F%E6%95%B0%E7%82%B9%E5%90%8E10%E4%BD%8D.md

https://www.guokr.com/question/461510/

相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页