LRU 缓存机制 设计和实现一个 LRU(最近最少使用)缓存数据结构

题目:LRU 缓存机制 设计和实现一个 LRU(最近最少使用)缓存数据结构,使它应该支持一下操作:get 和 put。 get(key) - 如果 key 存在于缓存中,则获取 key 的 value(总是正数),否则返回 -1。 put(key,value) - 如果 key 不存在,请设置或插入 value。当缓存达到其容量时,它应该在插入新项目之前使最近最少使用的项目作废。

参考答案

进阶:

你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // 返回  1
cache.put(3, 3);    // 该操作会使得密钥 2 作废
cache.get(2);       // 返回 -1 (未找到)
cache.put(4, 4);    // 该操作会使得密钥 1 作废
cache.get(1);       // 返回 -1 (未找到)
cache.get(3);       // 返回  3
cache.get(4);       // 返回  4

思路解析

这道题是让我们实现一个 LRU 缓存器,LRU是Least Recently Used的简写,就是最近最少使用的意思。

这个缓存器主要有两个成员函数,get和put。

其中 get 函数是通过输入 key 来获得 value,如果成功获得后,这对 (key, value) 升至缓存器中最常用的位置(顶部),如果 key 不存在,则返回 -1 。

而 put 函数是插入一对新的 (key, value),如果原缓存器中有该 key,则需要先删除掉原有的,将新的插入到缓存器的顶部。如果不存在,则直接插入到顶部。

若加入新的值后缓存器超过了容量,则需要删掉一个最不常用的值,也就是底部的值。

具体实现时我们需要三个私有变量,cap , l 和 m,其中 cap 是缓存器的容量大小,l 是保存缓存器内容的列表,m 是 HashMap,保存关键值 key 和缓存器各项的迭代器之间映射,方便我们以 O(1) 的时间内找到目标项。

然后我们再来看 get 和 put 如何实现。

其中,get 相对简单些,我们在 m 中查找给定的key,若不存在直接返回 -1;如果存在则将此项移到顶部。

对于 put ,我们也是现在 m 中查找给定的 key,如果存在就删掉原有项,并在顶部插入新来项,然后判断是否溢出,若溢出则删掉底部项(最不常用项)。

动画演示

动画录制少录了几秒,见谅:

 

 

Made by Jun Chen

参考代码

python版本的:

class LRUCache(object):
    def __init__(self, capacity):
    """
    :type capacity: int
    """
    self.cache = {}
    self.keys = []
    self.capacity = capacity
    
    def visit_key(self, key):
        if key in self.keys:
            self.keys.remove(key)
        self.keys.append(key)
    
    def elim_key(self):
        key = self.keys[0]
        self.keys = self.keys[1:]
        del self.cache[key]
        
    def get(self, key):
        """
        :type key: int
        :rtype: int
        """
        if not key in self.cache:
            return -1
        self.visit_key(key)
        return self.cache[key]
    
    def put(self, key, value):
        """
        :type key: int
        :type value: int
        :rtype: void
        """
        if not key in self.cache:
        if len(self.keys) == self.capacity:
        self.elim_key()
        self.cache[key] = value
        self.visit_key(key)

def main():
    s =
    [["put","put","get","put","get","put","get","get","get"],[[1,1],[2,2],[1],[3,3],[2],[
    4,4],[1],[3],[4]]]
    obj = LRUCache(2)
    l=[]
    for i,c in enumerate(s[0]):
        if(c == "get"):
            l.append(obj.get(s[1][i][0]))
        else:
            obj.put(s[1][i][0], s[1][i][1])
    print(l)

if __name__ == "__main__":
    main()

c++版本的:

class LRUCache{
    public:
        LRUCache(int capacity) {
            cap = capacity;
        }
        
        int get(int key) {
            auto it = m.find(key);
            if (it == m.end()) return -1;
            l.splice(l.begin(), l, it->second);
            return it->second->second;
        }
        
        void set(int key, int value) {
            auto it = m.find(key);
            if (it != m.end()) l.erase(it->second);
            l.push_front(make_pair(key, value));
            m[key] = l.begin();
            if (m.size() > cap) {
                int k = l.rbegin()->first;
                l.pop_back();
                m.erase(k);
            }
        }
    
private:
    int cap;
    list<pair<int, int>> l;
    unordered_map<int, list<pair<int, int>>::iterator> m;
};

Java代码:

package question;

import java.util.*;

/**
 * 哈希表加双向链表。
 *
 * 每次新增节点时,往链表头部放入。需要删除时,删除链表尾节点。
 *
 * get()和put()的时间复杂度均是O(1)。空间复杂度是O(n),其中n为缓存的键数。
 *
 * 执行用时:141ms,击败79.91%。消耗内存:55.7MB,击败96.89%。
 */
class LRUCache1 {
    private class Node {
        private int key;
        private int value;
        private Node pre;
        private Node next;

        public Node() {
        }

        public Node(int key, int value) {
            this.key = key;
            this.value = value;
        }
    }

    private Node dummyHead = new Node();
    private Node dummyTail = new Node();
    private int capacity;
    private int size;
    private HashMap<Integer, Node> hashMap = new HashMap<>();

    //将节点添加到虚拟头节点之后
    private void add(Node node) {
        Node originHead = dummyHead.next;
        dummyHead.next = node;
        node.pre = dummyHead;
        node.next = originHead;
        originHead.pre = node;
    }

    //删除某个节点
    private void del(Node node) {
        Node preNode = node.pre;
        Node nextNode = node.next;
        preNode.next = nextNode;
        nextNode.pre = preNode;
        node.pre = null;
        node.next = null;
    }

    public LRUCache1(int capacity) {
        dummyHead.next = dummyTail;
        dummyTail.pre = dummyHead;
        this.capacity = capacity;
        size = 0;
    }

    public int get(int key) {
        Node node = hashMap.get(key);
        if (null == node) {
            return -1;
        }
        del(node);
        add(node);
        return node.value;
    }

    public void put(int key, int value) {
        Node node = hashMap.get(key);
        if (null != node) {
            node.value = value;
            del(node);
            add(node);
        } else {
            if (size < capacity) {
                size++;
            } else {
                //删除链表尾节点
                Node delNode = dummyTail.pre;
                hashMap.remove(delNode.key);
                del(delNode);
            }
            Node newNode = new Node(key, value);
            add(newNode);
            hashMap.put(key, newNode);
        }
    }
}



或


package question;

import java.util.LinkedHashMap;
import java.util.Map;

/**
 * 自定义一个雷LRULinedHashMap继承自LinkedHashMap,并重写其removeEldestEntry方法。
 *
 * get()和put()的时间复杂度均是O(1)。空间复杂度是O(n),其中n为缓存的键数。
 *
 * 执行用时:144ms,击败74.73%。消耗内存:62.3MB,击败67.95%。
 */
public class LRUCache2 {

    private int capacity;
    private LRULinkedHashMap<Integer, Integer> lruLinkedHashMap = new LRULinkedHashMap<>();

    private class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {
        @Override
        protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
            if (size() > capacity) {
                return true;
            } else {
                return false;
            }
        }
    }

    public LRUCache2(int capacity) {
        this.capacity = capacity;
    }

    public int get(int key) {
        Integer value = lruLinkedHashMap.get(key);
        if (null == value) {
            return -1;
        }
        lruLinkedHashMap.remove(key);
        lruLinkedHashMap.put(key, value);
        return value;
    }

    public void put(int key, int value) {
        if (lruLinkedHashMap.containsKey(key)) {
            lruLinkedHashMap.remove(key);
        }
        lruLinkedHashMap.put(key, value);
    }

}

参考链接:

 https://github.com/debitCrossBlockchain/interview__reference/blob/master/01.%E9%98%BF%E9%87%8C%E7%AF%87/1.1.4%20LRU%E7%BC%93%E5%AD%98%E6%9C%BA%E5%88%B6.md

https://juejin.im/post/5c4eaa65e51d4552411b1b85

 

相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页